
SOFTWARE DESIGN SPECIFICATION
Outline and Requirements

General Comments: The following guidelines are given in italics and reporesent

the base minimim required to complete this plan.  Non-italicized text is to be
included in your plan verbatim.  All sections must be included in your plan, even
if you do not feel it applies.

1.     Scope
The general scope of the project is given in this section.  Give one or two introductory paragraphs
here.

1.1. System Objectives
Clearly state the overall objectives and subobjectives of the system of which this software project
is a part.  These objectives must be consistent with the objectives given in the Systems
Requirements Document and the Software Requirements Document.

1.2. Hardware, Software and Human Interfaces
Clearly identify the scope of all interfaces between the software project described by this
document and the external software programs, hardware ports, and human functions such as
display screens and mouse inputs.  Include a context diagram or figure to place your descriptions
in context.  Note that this section describes the scope of interfaces, not the interfaces
themselves.

1.3. Major Software Functions
Using applicable diagrams and text, describe all major software functions that are a part of the
software project described in this document.  These functions should be described only to the
extent that the functional scope of the project is made clear.

1.4. Externally Defined Database
Define and characterize any significant files, external databases or database systems used by
the program.  Level of description should be enough to establish the scope of interaction between
the program and the database or database system.

1.5. Major Design Constraints and Limitations
Identify all design constraints and limitations against which the software will be defined.  Repeat
the constraints and limitations from the SRS and further refine their description at a design level.

2.     Reference Documents
Identify all documents used throughout the design process.  Reference documents include:

• Mandatory compliance and guidance standards
• Documentation on all prior software, components, and libraries used in this project
• Significant CASE tools documents
• Sources of algorithms, methods, or significant processes used in developing or within

the software itself
Use a standard bibliography style of reference.  Separate the listings of documents into the
following categories:

2.1. Existing Software Documentation
2.2. System Documentation
2.3. Vendor Documents
2.4. Technical Reference



3.     Design Description
This section contains the actual design descriptions of the program, subsystems, and each
module.  Use graphics and tabular representations augmented by clear and consise text.  Cross-
reference liberally.

3.1. Data Description
3.1.1. Review of Data Flow

Copy significant data flow diagrams from the SRS to this section.  Explain the diagrams
with text to ensure section stands alone (i.e., do not make references back to the SRS).
At a minimum the level 0 and level 1 diagram must be shown and described.

3.1.2. Review of Data Structure
Copy from the SRS the data descriptions of all data id's shown in the figures, table, or
text given in Section 3.1.1 above.  Explain all data as necessary to ensure section stands
alone without reference to the SRS.

3.2. Derived Program Structure
Give a sequence of heirarchical structure chart figures in decomposeable order each augmented
with tables and text for added clarity.  Note that the hierachical charts do not necessary reflect
the same organization as the data flow diagrams in the SRS, but rather reflect a module-level
structure of the program.

3.3. Interfaces within Structure
Completely identify all aspects of the major interfaces between structure elements in the
program.  Such interfaces may include data structures, timing diagrams, lists of data item id's, or
other form of explanation.  Note that each interface will include explanatory text, and should
include graphical representations wherever possible.  The depth of description should be enough
that a complete module design can be given in the next section where the level of abstraction of
the interface is no higher than that of the module design.

4.        Module Design
This section should be organized by module.  For each module present in detail the design of the
module.  The sections to be given for each module are:

Processing Narrative Describe the behavior of the module in text.

Interface Description First give the calling syntax as proc (arg, arg, ...)

then define each arg, proc type, and return type.

Design Language Description Code the module using pseudo-code or formal
design language.

Modules Used Give a list of modules called by this module.  Give a
short phrase description of each module name on the
list.

Data Organization Completely describe each internal data item in the
module using a formal data method (e.g., C types,
ADA types, etc.).

Comments Give in text all special notes or other items not
included in the Processing Narrative section.

This section can be quite large.  Make up each section in a form-like format to make the task of
preparing this section more structured.



5.     File Structures and Global Data
Give a brief textual description of each file and global data items as a means of introducing this
section.

5.1. External File Structures
For each file, give the following:

Logical Structure Describe the logical structure of the entire file graphically
or tabularly.  Use text as necessary to clarify the structure.

Logical Record Description For each record type in the file, describe its strucuture and
meanings of each field.

Access Method Identify the method of access to the file (e.g., hash,
indexed. pile, sequential, etc.).

The use of formal data modelling methods is helpful, but not strictly necessary.

5.3 Global Data
Describe each global data item in turn, giving sufficient information for direct coding into data
types in the implementation phase.  The use of formal data modelling methods is helpful, but not
required.

5.3. File and Data Cross Reference
In this section, give in tabular and/or graphical form the association between data items in the
program and data items in each file.  For instance if you have an input file where each line is read
in turn and the data is parsed into a data structure called inline, then show how the line structure
and fields maps into the data structure items.  Also give any enumeration or range limits.

6.     Requirements Cross Reference
This section of several tabular lists such as

• Module versus requirement in the SRS
• Module data item versus data dictionary entry in the SRS
• File name  versus file name in the SRS
• ... and any other major association between the contents of the SRS and the design

7.     Test Provisions
This section refines the test plan information given in the SRS.  Note that the tests themselves
are not specified here (they are given in the Software Test Plan document).

7.1. Test Guidelines
Identify all guidelines and suggestions for test setup, environment, and application.  This section
applies primarily to the unit testing of each module or collection of units performing a function.

7.2. Integration Strategy
Give an outline of the procedure or sequence of tasks (including testing tasks) for integrating the
modules into a working program.  Ususally, each unit (i.e., module) is unit tested, then the
modules are integrated into functional collections of modules and each is tested.  Then these
units combined into subsystems each of which are tested followed by a complete all-up program
test.  This section should give a "cookbook" step-by-step presentation of this process.

7.3. Special Considerations
This section includes further clarification on test development or application.  For instance, if
some special stubs are needed they can be further described here.

8.     Packaging



This section describes how the executing segments of the program go together.  If the program is
segmented by overlays than section 8.1 applies.  Other forms of program segmentation are
allocation of modules or objects to nodes in a parallel processor, assignment of program sections
to parts of memory (such as the TPA, high memory, or extended memory on a PC).  If there are
no special packaging requirements, so state.

8.1. Special Program Overlay Provisions
Graphically show how the program is partitioned for memory or processor allocation purposes.
Use text for clarification.

8.2. Transfer Considerations
If the program is dynamically allocated during operation (e.g., VROOM by Borland Int.) describe
its operation here.  This section generally applies to programs operating over a suite of
processors on a network.

9.     Special Notes
Anything that doesn't fit above goes here.

10.   Appendices
The Appendix contains copies of vendor or internal documents, large graphics that do not fit well
in the body of the document, or other information gemain to the document but to unwieldy or
unimportant to put in the body of the document.


